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We provide a sufficient condition of analyticity of infinitely differentiable
eigenfunctions of operators of the form Uf(x)=> a(x, y) f(b(x, y)) m(dy)
acting on functions f: [u, v] Q C (evolution operators of one-dimensional
dynamical systems and Markov processes have this form). We estimate from
below the region of analyticity of the eigenfunctions and apply these results
for studying the spectral properties of the Frobenius–Perron operator of the
continuous fraction Gauss map. We prove that any infinitely differentiable
eigenfunction f of this Frobenius–Perron operator, corresponding to a non-zero
eigenvalue admits a (unique) analytic extension to the set C0(−., −1].
Analyzing the spectrum of the Frobenius–Perron operator in spaces of smooth
functions, we extend significantly the domain of validity of the Mayer and
Röpstorff asymptotic formula for the decay of correlations of the Gauss map.

KEY WORDS: Gauss map; Frobenius–Perron operators; analytic extension;
decay of correlations; spectral decomposition.

1. INTRODUCTION

The Gauss or continuous fractions map

G: (0, 1) Q [0, 1), G(x)=1/x (mod 1) (1)

is one of the most interesting exact dynamical systems with origin not only
in number theory (1–4) but also in cosmology since G is an approximation of
the Poincare return map of the Mixmaster cosmological model. For the



derivation of Mixmaster Universe model and Poincare return map from
Einstein equations we refer to refs. 5–8 and references therein. The density
of the unique absolutely continuous invariant Borel probability measure
of the Gauss map is r(x)=1/[(1+x) ln 2]. The Frobenius–Perron opera-
tor (9) of the Gauss map (1) with respect to this measure is (2)

UG f(x)= C
.

n=1
an(x) f (bn(x)) (2)

where

an(x)=
x+1

(x+n)(x+n+1)
and bn(x)=

1
x+n

. (3)

It is well-known (1, 9) that the spectrum of the Frobenius–Perron opera-
tor of an exact endomorphism S in L2(m) (m is the absolutely continuous
probability invariant measure of S) is the closed unit disk and that any
point z ¥ C with |z| < 1 is an eigenvalue of infinite multiplicity. Nevertheless
the spectral analysis of Frobenius–Perron operators is a powerful tool for
studying unstable dynamics (9) because the spectra of Perron–Frobenius
operators in some natural function spaces (like smooth or analytic func-
tions) are often countable and consist of isolated eigenvalues of finite mul-
tiplicity. These eigenvalues are also known as resonances and determine the
decay of the correlation functions. For piecewise analytic expanding maps
one can apply the the dynamical zeta-function method (10–18) to estimate the
resonances. Moreover, for some important examples of expanding maps
one can find the resonances and corresponding eigenfunctions explicitly
and obtain a spectral decomposition formula, representing the action of the
Frobenius–Perron operator on a certain function space. (19–24)

For the Gauss map Mayer and Röpstorff gave (2) (see also refs. 3
and 4, Chapter 7) some estimations of the behaviour of the Frobenius–
Perron operator UG, which we present as Theorem MR. For an operator
A on a topological vector space, whose spectrum s(A) is a sequence
of eigenvalues (of finite multiplicity) converging to 0, (25) we denote by
ln=ln(A), n=0, 1,... the eigenvalues of A, enumerated (taking into
account the multiplicity) in such a way that |ln+1 | [ |ln | for all n ¥ N and
arg ln [ arg ln+1 if |ln+1 |=|ln |.

Theorem MR. Let H be the space of functions, holomorphic in the
half-plane W={z ¥ C : Re z > − 1

2}, bounded in {z ¥ C : Re z > − 1
2+e} for

any e > 0 and square-integrable with the density

x(x+iy)=˛p/[(y2+(1+x)2)] if 0 < x < 1/2,
0 if x ¨ (0, 1/2).
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Then H is a separable Hilbert space with the scalar product

Og, fPH=FF
W

f(x+iy) g(x+iy) x(x+iy) dx dy,

UG(H) ı H, where UG is the Frobenius–Perron operator (2), the operator
UH=UG |H: HQH is nuclear and self-adjoint, ker UH={0}, l0(UH)=1
and

− 0.30366327 [ l1(UH) [ − 0.30366299, 0.10088 [ l2(UH) [ 0.10094.
(4)

Moreover, for any f ¥ H and any g ¥ L2[0, 1],

Og, Un
GfP=C+O(qn), where C=F

1

0

f(x)
ln 2(1+x)

dx · F
1

0
g(y) dy, (5)

where O · , ·P is the usual scalar product in L2[0, 1] and q=|l1(UH)|.

Although Theorem MR gives us information about the resonances of
the Frobenius–Perron operator (2) in the space H, it is not clear whether
the eigenvalues and corresponding eigenspaces of UG in H coincide with
the eigenvalues and eigenspaces in natural larger spaces: the space of ana-
lytic functions on [0, 1] and the Fréchet space C.[0, 1]. It is also not clear
whether eigenfunctions in H admit analytic extension outside the half-
plane {z: Re z > − 1/2}. In this paper we clarify both points. Namely, we
prove that non-zero eigenvalues and eigenspaces of UG in the space
C.[0, 1] coincide with the eigenvalues and corresponding eigenspaces of
UG in H. We also prove that any infinitely differentiable eigenfunction of
UG corresponding to a non-zero eigenvalue admits a holomorphic extension
to C0(−., −1] (Theorem 2). Based on these results, we extend the
domain of the validity of the asymptotic formula (5) for the decay of cor-
relation functions (Theorem 3). The proof of Theorems 2 and 3 is based on
Theorem 1, which gives a condition of analyticity of smooth eigenfunctions
of integral operators of the form

Uf(x)=F
Y

a(x, y) f(b(x, y)) m(dy) (6)

acting on functions f: [u, v] Q C.
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2. FORMULATION OF MAIN RESULTS

2.1. Analyticity of Smooth Eigenfunctions of Operators (6)

Let m be a s-additive positive finite measure on the measurable space
(Y, F), u, v ¥ R and u < v. By A we denote the space of measurable maps
j: [u, v] × Y Q C for which there exists a neighborhood O of [u, v] in C
and a bounded measurable function j̃: O × Y Q C such that j̃ is holo-
morphic with respect to the first variable and j̃(x, y)=j(x, y) for all
(x, y) ¥ [u, v] × Y. For f: [u, v] Q C and j: [u, v] × Y Q C infinitely dif-
ferentiable with respect to the variable x ¥ [u, v] we denote

Mn(f)=
1
n!

max
x ¥ [u, v]

|f (n)(x)|,

Mn(j)=
1
n!

sup
(x, y) ¥ [u, v] × Y

: “nj

“xn (x, y) : ,

1
r(f)

=O

n Q .

(Mn(f))
1
n,

1
r(j)

=O

n Q .

(Mn(j))1/n,
1

r̃(j)
=sup

n \ 2

1Mn(j)
M1(j)

2
1

n − 1

(7)

(if M1(j)=0 we put r̃(j)=+.). It is worth noticing that f: [u, v] Q C
is analytic if and only if r(f) > 0 and in this case r(f) is precisely the
maximal e > 0 for which f admits a holomorphic extension to the
e-neighborhood of [u, v] in C. (28)

Let a, b ¥ A and b([u, v] × Y) … [u, v]. We consider the operator U
defined by (6) and denote

y=y(U)= sup
(x, y) ¥ [u, v] × Y

: “b
“x

(x, y) : ,

c(U)=min{r(a), (1 − y(U)) r̃(b)}.

(8)

Note that the powers Un have the same shape (with Yn equipped with the
measure m × · · · × m instead of Y). This allows us to define

cg(U)=sup
n ¥ N

c(Un). (9)

Theorem 1. Let U be the operator (6) with cg(U) > 0, k ¥ N,
z ¥ C0{0} and f ¥ C.[u, v] be such that (U − zI)k f=0. Then f is ana-
lytic in [u, v] and r(f) \ cg(U).
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2.2. Spectral Properties of the Gauss Map

For n=(n1,..., nm) ¥ Nm we denote

bn(x)=bn1,..., nm
(x)=bn1

(bn2
(...(bnm

(x))...)), (10)

an(x)=anm
(x) · anm − 1

(bnm
(x)) · anm − 2

(bnm − 1, nm
(x)) · · · · · an1

(bn2,..., nm
(x)). (11)

Formula (2) implies that for any m ¥ N,

Um
G f(x)= C

n ¥ N
m

an(x) f(bn(x)), (12)

where UG is the Frobenius–Perron operator (2) of the Gauss map (1). Let

Uk=(UG)|Ck[0, 1]: Ck[0, 1] Q Ck[0, 1] and

Rm, k= sup
x ¥ [0, 1]

C
n ¥ N

m
an(x) |b −

n(x)|k.
(13)

The following Proposition 1 is the result of application of the Ruelle’s
theorem (13) (presented also as Theorem 2.5 in ref. 10) to the Gauss map.

Proposition 1. For any k ¥ N, the essential spectral radius of the
operator Uk is

Rk= lim
m Q .

(Rm, k)1/m= inf
m ¥ N

(Rm, k)1/m, (14)

where Rm, k are the numbers defined by (13).

In the following theorem we use the notation of Proposition 1.

Theorem 2. Let UG be the operator (2), c=4/(`5+1)2, k ¥ N
and H be the space of all complex-valued functions, holomorphic on
C0(−., −1] and bounded on each set

De={z ¥ C : |Im z| > e or Re z > − 1+e}, e > 0. (15)

Then Rk [ ck, the set Sk={z ¥ s(Uk) : |z| > Rk} is a finite set of eigenvalues
of finite multiplicity and for any z ¥ Sk, the eigenspace

E(z)={f ¥ Ck[0, 1] | ,n ¥ N : (Uk − zI)n f=0}
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has the following property:

E(z)={f ¥ Ck[0, 1] | Uk f=zf} … H … H … C.(R). (16)

The equality from (16) implies that the restriction (UG)|E(z) is the scalar
operator zI (no Jordan blocks appear). Formula (16) implies also that non-
zero eigenvalues and corresponding eigenspaces of the operator UG in
spaces C., H and H coincide.

2.3. Decay of Correlation Functions of the Gauss Map

Theorem 2 allows us to extend significantly the domain of validity of
the Mayer and Roepstorff asymptotic formula (5). Below ln stand for
ln(UG |C.) which are equal according to Theorem 2 to ln(UG |H)=
ln(UG |H)=ln(UG |C.).

Theorem 3. Let UG be the operator (2), k ¥ N, f ¥ Ck[0, 1], g be
any linear continuous functional on Ck[0, 1], q=|l1 | if k \ 2 and q ¥ (c, 1)
if k=1, where c=4/(`5+1)2. Then

OUn
Gf, gP=C+O(qn), where C=F

1

0

f(x)
ln 2(1+x)

dxO1, gP.

In particular, the asymptotic formula (5) is valid for any f ¥ C2[0, 1]
(not only for f ¥ H).

2.4. Spectral Decomposition

The following proposition is a consequence of Theorem MR and the
Hilbert–Schmidt theorem. (26)

Proposition 2. There exists an orthonormal basis fn, n=0, 1,... in
the Hilbert space H such that for any f ¥ H,

UG f= C
.

n=0
lnOfn, fPH fn, (17)

where the series (17) converges in the topology of the Hilbert space H

(and therefore uniformly).
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3. PROOF OF THEOREM 1

Lemma 1.1. Let f: [u, v] Q R and g: R Q C be two functions of
class Cn. Then for any x ¥ [u, v],

(g p f)(n) (x)=n! C
k1+· · ·+nkn=n

g(k1+· · ·+kn) (f(x))
k1! · · · kn!(1!)k1 · · · (n!)kn

(fŒ(x))k1 · · · (f(n)(x))kn,

(18)

where kj are non-negative integers.

Proof. This formula is known as a Vallée–Poussin equality (see, e.g.,
ref. 27). L

Lemma 1.2. Let c ¥ C and n ¥ N. Then

C
k1+ · · · +nkn=n

(k1+ · · · +kn)!
k1! · · · kn!

ck1+ · · · +kn=c(c+1)n − 1, (19)

where kj are non-negative integers.

Proof. Consider the functions f(x)=1/(2 − x) and g(x)=1/
(c+1 − cx). Then f (k)(x)=k!/(2 − x)k+1 and g (k)(x)=ckk!/(c+1 − cx)k+1.
According to (18)

(g p f) (n) (1)=n! C
k1+ · · · +nkn=n

(k1+ · · · +kn)!
k1! · · · kn!

ck1+ · · · +kn. (20)

From the other side (g p f)(x)= 1
c+1 (1+ c

(c+2) −(c+1) x). Hence, (g p f)(n) (1)=
n! c(c+1)n − 1. This equality and (20) imply (19). L

Lemma 1.3. Let U be the operator (6) with y=y(U) < 1, z ¥

C0{0} and f ¥ C.[u, v] be such that the function g=Uf − zf is analytic.
Then f is analytic and r(f) \ min{r(g), c(U)}.

Proof. Pick arbitrary Ra > 1/r(a) and Rg > 1/r(g). Then according
to (7) there exist La, Lg ¥ (0, +.) such that

Mn(a) [ LaRn
a and Mn(g) [ LgRn

g for all n ¥ Z+. (21)

Put Rb= 1
r̃(b) , where r̃(b) is defined in (7). According to (7) and (8)

Mn(b) [ yRn − 1
b =

y

Rb
Rn

b for all n ¥ N. (22)

Pick now arbitrary R > max{Rg, Ra, Rb/(1 − y)}. Then

R > Ra, R > Rg and yR+Rb < R. (23)

Spectral Analysis of the Gauss Map 361



Since y*(U) < 1 there exists a positive integer j for which

Mj=max
k \ j

: F
Y

a(x, y) 1 “b
“x

(x, y)2
m

m(dy): < |z|.

Therefore there exists q ¥ N, q \ j such that for all l \ q,

Lg

Lam(Y)
R l

g+R l
a < R l,

Lam(Y) yR
(|z| − Mj)(yR+Rb)

lR l
a < R l and (24)

Lam(Y) yR
(|z| − Mj)(yR+Rb − Ra)

(yR+Rb) l < R l if yR+Rb > Ra. (25)

Hence there exists L > 1 such that

Mn(f) [ LRn (26)

for n=0, 1,..., q. We shall prove inductively that the inequality (26) holds
also for n=q+1, q+2,... Suppose that m > q and (26) holds for all n < m.
We have to verify (26) for n=m. For this goal we differentiate the equality

zf(x)+g(x)=F
Y

a(x, y) f(b(x, y)) m(dy)

m times and use Leibniz formula (27) and Lemma 1.1:

zf(m)(x) − F
Y

a(x, y) 1“b
“x

(x, y)2
m

f (m)(b(x, y)) m(dy)

= − g (m)(x)+F
Y

1“
ma

“xm (x, y) f(b(x, y))

+ C
m

n=1
C

n=k1+ · · · +nkn
k1 ] m

“
m − na

“xm − n (x, y)
m!f (k1+ · · · +kn)(b(x, y))

(m − n)! k1! · · · kn!(1!)k1 · · · (n!)kn

×1“b
“x

(x, y)2
k1

· · ·1“
nb

“xn (x, y)2
kn 2 m(dy).

After obvious estimations using (7) we obtain

(|z| − Mj) Mm(f)

[ Mm(g)+m(Y) 1Mm(a) M0(f)+ C
m

n=1
C

n=k1+ · · · +nkn
k1 ] m

(k1+ · · · +kn)!
k1! · · · kn!

× Mm − n(a) Mk1+ · · · +kn
(f) Mk1

1 (b) · · · Mkn
n (b)2 .
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The induction hypothesis and inequalities (21), (22) imply that

Mm(f) [
LLam(Y)
|z| − Mj

1Rm
a +

LgRm
g

LLam(Y)
− Rm

+ C
m

n=1
Rm − n

a Rn
b C

n=k1+ · · · +nkn

(k1+ · · · +kn)!
k1! · · · kn!

1yR
Rb

2k1+ · · · +kn 2 .

Since L > 1 from (24) it follows that

Mm(f) [
LLam(Y)
|z|−Mj

1 C
m

n=1
Rm−n

a Rn
b C

n=k1+· · · +nkn

(k1+·· ·+kn)!
k1! · · · kn!

1yR
Rb

2k1+· · ·+kn 2.

(27)

According to Lemma 1.2

C
n=k1+ · · · +nkn

(k1+ · · · +kn)!
k1! · · · kn!

1yR
Rb

2k1+ · · · +kn

=
yR
Rb

1yR
Rb

+12
n − 1

. (28)

Formulas (27) and (28) imply that

Mm(f) [
LLam(Y)
|z| − Mj

yR
yR+Rb

Rm
a C

m

n=1

1yR+Rb

Ra

2n

. (29)

Case 1. yR+Rb [ Ra. In this case formulas (29) and (24) imply that

Mm(f) [
LLam(Y) yR

(|z| − Mj)(yR+Rb)
Rm

a m < LRm.

Case 2. yR+Rb > Ra. In this case formulas (29), summation
formula for geometric progression and inequality (25) imply that

Mm(f) [
LLam(Y) yR((yR+Rb)m − Rm

a )
(|z| − Mj)(yR+Rb − Ra)

[
LLam(Y) yR(yR+Rb)m

(|z| − Mj)(yR+Rb − Ra)
< LRm.

Thus, in any case Mm(f) [ LRm, i.e., the inequality (26) is proved for
all n. Therefore f is analytic and r(f) \ 1/R. Since R is an arbitrary
number greater then max{Rg, Ra, Rb/(1 − y)}, Rg is an arbitrary number
greater then 1/r(g), Ra is an arbitrary number greater than 1/r(a) and
Rb=1/r̃(b) we arrive to the iequality r(f) \ min{r(g), r(a), (1 − y) r̃(b)}.

L
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Lemma 1.4. Let U be the operator (6) with y(U) < 1, k ¥ N,
z ¥ C0{0} and f ¥ C.[u, v] be such that g=(U − zI)k f is analytic. Then
f is analytic and r(f) \ min{r(g), c(U)}.

Proof. We shall use induction with respect to k. The case k=1
follows from Lemma 1.3. Let k > 1 and suppose that the conclusion of the
lemma is true for smaller k’s. Since, g=(U − zI)k − 1 h, where h=Uf − zf,
the induction hypothesis implies that h is analytic and r(h) \

min{r(g), c(U)}. Lemma 1.3 implies that f is analytic and r(f) \

min{r(h), c(U)} \ min{r(g), c(U)}. L

Now we shall prove Theorem 1. According to (9) for any e > 0, there
exists n ¥ N such that c(Un) > 0 and c(Un) \ cg(U)−e. Since (U−zI)k f=0,
we have that (Un −zn)k f=0. Lemma 1.4 implies that f is analytic and
r(f) \ c(Un) \ cg(U)−e. Hence, r(f) \ cg(U).

4. PROOF OF THEOREM 2

Lemma 2.0. Let k ¥ N, UG be the operator (2), z ¥ C, |z| > Rk

(see (14)) and f ¥ Ck[0, 1] be such that UG f − zf ¥ Ck+1[0, 1]. Then
f ¥ Ck+1[0, 1].

Proof. Let h=zf − UG f. Then h ¥ Ck+1[0, 1]. Differentiating the
equality zf − UG f=h k times with respect to x and using Lemma 1.1 and
Leibnitz formula (27) we obtain that

g=zf(k) − Wf (k) ¥ C1[0, 1], where

Wj(x)= C
.

n=1
an(x)(b −

n(x))m j(bn(x)).

According to Theorem 2.5 of ref. 10, the spectral radius of the opera-
tor W: C1[0, 1] Q C1[0, 1] does not exceed Rk. Since |z| > Rk, the oper-
ator (zI − W): C1[0, 1] Q C1[0, 1] is invertible. Since (zI − W) f (k)=
g ¥ C1[0, 1], we obtain that f (k)=(zI − W)−1 g ¥ C1[0, 1]. Therefore f ¥

Ck+1[0, 1]. L

Lemma 2.1. Let m, k ¥ N, UG be the operator (2), z ¥ C, |z| > Rk

(see (14)) and f ¥ Ck[0, 1] be such that (UG − zI)m f ¥ Ck+1[0, 1]. Then
f ¥ Ck+1[0, 1].

Proof. The case m=1 of Lemma 2.1 follows from Lemma 2.0. Let
m > 1 and suppose that for smaller m’s Lemma 2.1 is already proved. Since
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(UG − zI)m − 1 (UG − zI) f ¥ Ck+1[0, 1], the induction hypothesis implies that
(UG − zI) f ¥ Ck+1[0, 1]. Then f ¥ Ck+1[0, 1] according to Lemma 2.0. L

Lemma 2.2. Let UG be the operator (2), z ¥ C0{0}, f be a function
holomorphic in the 1-neighborhood of [0, 1] in C and g ¥ H be such that
UG f(w) − zf(w)=g(w) for all w ¥ [0, 1]. Then f ¥ H, i.e., f admits an
analytic extension to C0(−., −1] and this extension belongs to H.

Proof. First, let us verify the following statement:

(A) If [0, 1] … W0 … W1 ı C0(−., −1], where W0, W1 are connected
open subsets of C such that f admits an analytic extension to W0 and
1/(w+n) ¥ W0 for any n ¥ N and any w ¥ W1, then f admits an analytic
extension to W1.

Indeed, consider the function

h: W1 Q C, h(w)=
1
z
1 − g(w)+ C

.

n=1
an(w) f(bn(w))2 , (30)

where an and bn are defined in (3). According to the above conditions and
Weierstrass theorem (28) the function h is well-defined and analytic. Since
UG f(w) − zf(w)=g(w) for all w ¥ [0, 1], formulas (2) and (30) imply that
h(w)=f(w) for all w ¥ [0, 1]. According to the uniquness theorem, (28) h is
the desired analytic extension of f. The statement (A) is proved.

Let W be the 1-neighborhood of [0, 1] in C. (A) for W0=W and W1=
W 2 {w ¥ C : Re w > − 1/2} implies the existence of an analytic extension
of f to W 2 {w ¥ C : Re w > − 1/2}. Applying (A) to W0=W 2 {w ¥ C :
Re w > − 1/2} and W1={w ¥ C : Re w > − 1} we see that f admits an ana-
lytic extension to {w ¥ C : Re w > − 1}. Applying (A) to W0={w ¥ C :
Re w > − 1} and W1=W0=C01.

n=1 Dn, where Dn={w ¥ C : |w − n − 1/2|
[ 1/2}, we obtain that f admits an analytic extension to W0. Let now Wn

(n ¥ N) be sets

Wn=Wn − 1 2 {w ¥ C : 1/(w+k) ¥ Wn − 1 for any k ¥ N}.

It is easy to see that Wn is an increasing sequence of open connected subsets
of C0(−., −1]. The statement (A) implies inductively the existence of an
analytic extension of f to Wn for any n ¥ N. Therefore f admits an analytic
extension to W=1.

n=0 Wn. In order to prove the existence of an analytic
extension of f to C0(−., −1] we have to show that W=C0(−., −1].
Let w ¥ C0(W0 2 (−., −1]). It suffices to verify that w ¥ W. For this goal
we consider the sequence: w0=w, wk+1=1/(wk+jk), where jk=j(wk) is

Spectral Analysis of the Gauss Map 365



the nearest natural number to − wk (this number is unique since
wk ¥ C0(W0 2 (−., −1])). From the definition of W it follows that the
inclusion w ¥ W will be proved if we demonstrate the existence of k ¥ N for
which wk ¥ W0. Suppose that such k does not exist. Then wk ¨ W0 for any k.
Let ak=Re wk and bk=Im wk. Since wk ¨ W0 and wk ¨ (−., −1], we
have that bk ] 0. By definition wk+1=1/((ak+jk)+bki)=(ak+jk − bki)/
((ak+jk)2+b2

k). Since wk ¨ W0 we obtain that ((ak+jk)2+b2
k) [ 1/4.

Therefore |Im wk+1 | \ 4 |bk |=4 |Im wk |. Hence, |Im wk | Q +., which con-
tradicts the assumption wk ¨ W0. The existence of the desired analytic
extension is proved.

It remains to show that the extended function f is bounded on each
De of (15). The uniqueness theorem implies that the equality zf(w)=
− g(w)+UG f(w) is valid for any w ¥ C0(−., −1]. Since the closure K of
the set 1.

n=1 {bn(w): w ¥ De} is a compact subset of C0(−., −1], we have
that there exists C1=C1(e) > 0 such that |g(w)| < C1 and |f(bn(w))| [ C1

for any n ¥ N and w ¥ De. On the other hand one can easily verify that
there exists C2=C2(e) > 0 such that ; |an(w)| [ C2 for any w ¥ De. Then
according to the equality zf(w)= − g(w)+UG f(w) we obtain that
|f(w)| [ C1(1+C2)/|z| for any w ¥ De. Hence f ¥ H. L

Lemma 2.3. Let k ¥ N, UG be the operator (2), z ¥ C0{0}, f be a
function holomorphic in the 1-neighborhood of [0, 1] in C and g ¥ H be
such that (UG − zI)k f(w)=g(w) for all w ¥ [0, 1]. Then f ¥ H.

Proof. The case k=1 follows from Lemma 2.2. Let k > 1 and
suppose that the conclusion of the lemma is true for smaller k’s. Since,
g=(UG − zI)k − 1 h, where h=Uf − zf, the induction hypothesis implies
that h ¥ H. Then Lemma 2.2 implies that f ¥ H. L

Now we shall prove Theorem 2. It is easy to see that the functions
|b −

n(x)| decrease with respect to x and to any nj, where bn are functions
defined in (10). Therefore

yk=sup{|b −

n(x)| : x ¥ [0, 1], n=(n1,..., nk) ¥ Nk}=|b −

1(0)|, (31)

where 1=(1,..., 1). Calculating the derivative of the rational function b1

we obtain

yk=D
k

j=1
a2

j , where a1=1, aj+1=1/(1+aj). (32)
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Since limn Q . a2
n=4/(`5+1)2=c. Formulas (31), (32), (13), and (14)

imply that

Rm, k [ ym
k =D

k

j=1
a2m

j S Rk= lim
m Q .

(Rm, k)1/m [ ck.

Let now z ¥ Sk and f ¥ E(z). According to Lemma 2.1 f ¥ Ck+1[0, 1].
Using induction with respect to k, we see that f ¥ C.[0, 1]. In particular,
the space E(z) does not depend on k provided |z| > Rk. Let us prove now
that f admits an analytic extension to an 1-neighborhood of the segment
[0, 1] in C. For any m ¥ N the operator Um

G has the form (6) with Y=Nm

and m(n)=n−2
1 · · · · · n−2

m . Clearly the parameter y(Um
G ) defined in (8) is

equal to ym of (31). According to (32) ym < 1 for any m \ 2. Therefore, we
can apply Theorem 1. Calculations similar to the above calculation of ym

show that the parameter r̃(b) for Um
G (see (7)) is equal to 1/am. Obviously

the parameter r(a) for Um
G is equal to 1. According to Theorem 1 and for-

mula (8)

r(f) \ cg(U) \ sup
m \ 2

11 − D
m

j=1
a2

j
2 1

am

\ lim
m Q .

11 − D
m

j=1
a2

j
2 1

am
=11 −

4

(`5+1)2
2 `5+1

2
=1.

Definition of r(f) implies that f admits an analytic extension to the
1-neighborhood of [0, 1]. According to Lemma 2.3, f ¥ H … H. This
proves that z-eigenspaces of the restrictions of UG to Ck[0, 1], to H and
to H are identical. Since the operator UG |H: HQH is self-adjoint
(Theorem MR), we obtain (16).

5. PROOF OF THEOREM 3

Case 1. k=1. For any f ¥ C1[0, 1] we have that f=C+f1,
where the constant C is defined by (5) and

f1 ¥ E=3f ¥ C1[0, 1] : F
1

0

f(x)
x+1

dx=04 .

Since UG1=1 and UG(E) ı E, we have OUn
Gf, gP=CO1, gP+OUn

Ef, gP,
where UE=UG |E: E Q E. According to Theorems 2 and MR, the spectral
radius of UE does not exceed c. Since c < q, we obtain that |OUn

Gf, gP−
CO1, gP|=|OUn

Ef, gP| [ ||f|| ||g|| ||Un
E ||=O(qn).
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Case 2. k \ 2. Let L be the two-dimensional space spanned by the
eigenvectors of UG, corresponing to the eigenvalues l0=1 and l1. Accord-
ing to Theorems 2 and MR l0 and l1 are simple eigenvalues of the opera-
tor UG |Ck[0, 1]: Ck[0, 1] Q Ck[0, 1] (the essential spectral radius of this
operator is less then q=|l1 |). Then there exists a closed linear subspace M
of Ck[0, 1] of codimension 2 such that Ck[0, 1]=L À M, and both closed
linear subspaces L and M are invariant with respect to UG. Let f0 be the
projection of f onto L along M and f1=f − f0. Since the spectral radius
of the operator UM=UG |M: M Q M is less than q, we have that
|OUn

Gf1, gP| [ ||f1 || ||g|| ||Un
M ||=o(qn). Standard arguments from linear

algebra lead to OUn
Gf0, gP=C+cln

1, where C is the constant defined by (5)
and c=c(f, g) ¥ C. Hence, OUn

Gf, gP=OUn
Gf0, gP+OUn

Gf1, gP=C+O(qn).

6. CONCLUDING REMARKS

1. Let z ] 0 and f ¥ C.[0, 1] be a non-constant eigenfunction of the
Frobenius–Perron operator UG of the Gauss map. Theorem 2 implies that
f admits an analytic extension to C0(−., −1]. Analyzing the functional
equation UG f=zf it is possible to show that the set of singularities of f is
precisely the interval (−., −1]. Moreover, for any t ¥ (−., −1] the ana-
lytic extension of f is unbounded in any upper half-disk and any lower half-
disk with the center in t.

2. The class of integral operators (6) includes classical integral
operators (for them Y=[u, v] and b(x, y)=y), the evolution operators of
dynamical systems and Markov processes. We may enlarge this class of
operators replacing the interval [u, v] by a compact analytic Riemannian
manifold and considering such operators acting on vector-valued functions.
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